Determining the temperature using a Resistance Temperature Detector (RTD) involves translating the sensor’s electrical resistance into a corresponding temperature value. This process typically relies on a known relationship between resistance and temperature for the specific RTD material, often platinum. The calculation often uses a polynomial equation, most commonly a Callendar-Van Dusen equation, which accounts for the non-linear relationship between resistance and temperature, especially over broader temperature ranges. For example, a platinum RTD with a resistance of 100 ohms at 0C (Pt100) will exhibit a change in resistance that can be correlated to temperature based on its characteristic curve.
Accurate temperature measurement is crucial in various industrial and scientific applications. Using RTDs for this purpose offers advantages due to their stability, accuracy, and relatively linear response within their operating temperature range. The ability to precisely convert resistance values to temperature readings is essential for process control, environmental monitoring, and research activities. Historically, RTDs have been preferred over other temperature sensors in applications requiring high precision and repeatability, contributing significantly to improvements in automation, safety, and efficiency across diverse sectors.